Archives for category: cancer

The Leukaemia Foundation of Australia’s National MDS Day has just passed (14th July… but I was busy eating croissants so this post is a little late).

This time I thought I would tell you about a discovery that was made with the help of MDS.

How do healthy cells turn cancerous? Their DNA gradually accumulates errors. Most of these errors aren’t important, but occasionally they stop the cell from working properly. They might cause a cell to grow out of control – and this can lead to cancer.

Myelodysplastic syndromes, or MDS, are a range of blood disorders caused by such errors in the genes. Some types of MDS are relatively mild, but about a third go on to become acute myeloid leukaemia (AML). Thanks to research on MDS we understand its causes a lot better than we did ten or fifteen years ago.

My lab recently published a paper describing three cases of poor prognosis MDS and one case of AML with unusual but remarkably similar changes to the DNA. This complicated structure could not have been predicted by the standard methods of analysing cancer DNA or chromosomes. These features showed us the likely steps that led to these diseases.

Each long string of DNA is folded up neatly to make a chromosome. This is a Claymation that shows how Barbara McClintock’s classic breakage-fusion-bridge cycle causes chromosome abnormalities. The video shows one way that chromosomes (packages of DNA) can become disorganised.

The telomeres (that cap and protect the ends of the chromosomes) are shown falling off, making sticky chromosome ends which join together (see NOTE 2). It’s well accepted that these changes greatly increase the chance of cancerous gene changes. This process has reproduced many, many times in the lab. The problem is that it’s not often been demonstrated in actual cancers. But we did that.
Sometimes only part of the telomere erodes away – enough is lost that it no longer protects the chromosomes from sticking together. But there can be enough telomere DNA left to be a molecular signature of the telomere.

dic 20-22

The arrow points to green dots in the middle of a chromosome. This is the left-over telomere signature that tells us that this abnormal chromosome was made by the joining together of sticky chromosome ends that had their telomeres eroded away. The other green dots are at the chromosome ends. The left and right photos show the same cell but in the right one the abnormal chromosome is identified by its red and blue label.

In our four cases we found that there was a small but non-functional piece of telomere DNA left behind where the two chromosomes joined. Because the telomeres didn’t function, the two chromosome ends could stick together. These caused breakage-fusion-bridge events that caused a protective tumour suppressor gene to be lost, and may have also caused cancer-causing genes to multiply.
MDS and AML have similar genetic causes, so if we learn about the causes of one of them it can help us understand the other. This is often the case with cancer research in a broader sense – if we understand the basic mechanisms in one cancer it can help us understand the mechanisms at work in other cancers better. Telomere fusion could potentially play a role in any cancer, so our MDS research is relevant to cancer research in general.

NOTES

  1. The paper: The dicentric chromosome dic(20;22) is a recurrent abnormality in myelodysplastic syndromes and is a product of telomere fusion. Ruth MacKinnon, Hendrika Duivenvoorden, Lynda Campbell and Meaghan Wall, 2016. Cytogenetic and Genome Research 150(3-4):262-272
  2. The gene errors discussed here usually occur in the body cells rather than the reproductive cells, so they’re not inherited.
  3. For simplicity the Claymation shows telomere fusion in chromosomes that are dividing.  In fact it probably occurs when the DNA is unravelled in the interphase nucleus.
  4. This is cross-posted to Fireside Science on the SciFund Challenge network.

In the cells that make up your body, about 2 metres (6 feet) of DNA – strings of genes – are coiled up and packaged into a typically roundish nucleus. This nucleus is only about one hundred-thousandth of a metre wide. I’ve said before that the DNA packed into the nucleus “appears to be a tangled mess”. But looks can be deceptive.

In this great little video Carl Zimmer challenges the idea that DNA in the nucleus is arranged randomly. Job Dekker and his group are finding that the nucleus is actually very organised. Zimmer conjures up an image of tiny robots in the cell folding the DNA very precisely.

//players.brightcove.net/245991542/344c319b-6d23-4cbc-975e-c8530534af8a_default/index.html?videoId=4823709456001

[From Science Happens! Episode 5: Everything you thought you knew about the shape of DNA is wrong]

Some genes control other genes. Dekker’s research suggests that the way DNA folds helps this process – by bringing controlling genes close to the genes they regulate. One cause of cancer could be bad folding that interferes with this control mechanism.

Dekker’s group is trying to work out which genes lie next to each other and how DNA is folded. The answer will be extremely complex.  Dekker thinks that one day this knowledge will make it possible to fix badly folded DNA in cancer cells.

Cross-posted to Fireside Science on the SciFund Challenge network.

This poster is on the wall by my desk. It was drawn by my young friend Nicholas. Nicholas is really keen on all things science and came with his mum to have a look at a science lab. He had done his research on leukaemia and brought me this cool picture. Thank-you Nicholas.

Stop Leukemia – by Nicholas

As we’ve seen in previous posts, cancer is caused by some sort of error in the DNA of the cancer. Human DNA comes in 46 long strings called chromosomes and it sometimes breaks, but luckily the break is usually repaired. However, sometimes the repair process gets it wrong – for example two DNA ends are joined together that aren’t meant to be together.

This post is about a fairly recent discovery called chromothripsis. I’m going to describe it in terms of language, because after all, DNA is a language, and I think it will help picture what’s going on.

Anagrams are made by rearranging all the letters of a phrase or word to make another phrase or word, and it’s best if the new has a similar meaning to the old. Some examples are:

astronomer —-> moon starer
the meaning of life —-> the fine game of nil.

The rule for “perfect” anagrams is that all the letters are re-used in the new sentence.

Setting up printing originally involved arranging individual letters in a particular order on a plate. If the letters were dropped it wouldn’t be easy to get the letters back in the right order. If you had to put them back together in a hurry they’d be jumbled up and you wouldn’t get a meaningful anagram. In fact you’d probably have some missing letters left on the floor in a corner somewhere. Ok it’s starting to get complicated, but something similar can happen to DNA!

A printer inspecting a large form of type on a cylinder press. Each of the islands of text represents a single page, the darker blocks are images. The whole bed of type is printed on a single sheet of paper, which is then folded and cut to form many individual pages of a book.

At the beginning of 2011 Joshua Stephens and his colleagues published a paper that got a lot of cancer biologists excited. They noticed that the DNA of some cancers was very messed up. They even said that they’d found this in 10% of the cancers where they looked for it. Not only that, but they thought this had happened all at once by shattering of the chromosomes and rejoining of the broken pieces in a random and totally incorrect order.

Scientists love to make complicated words out of Greek roots. The Stephens paper called this process, this shattering and stitching back together of the chromosomes, “chromothripsis“. (An aside: The chromo- in chromothripsis is short for chromosome, or coloured thing. The authors say that thripsis means shattering into pieces.)

I had a couple of nice examples of chromothripsis acute myeloid leukaemia, but as someone who’s interested in chromosomes I wanted to talk about the chromosomes that were made by this whole chromothripsis process. There was no word for these new chromosomes so I came up with the term “anachromosome“. I like it because it has connotations of “new”, “remade”, and my favourite, “anagrams”. Although the anagram rule says all the letters have to be reused, there are apparently imperfect” anagrams which can leave out some letters to make the anagram work. This is more like an anachromosome. Inevitably lots of bits of chromosome don’t make it into the anachromosome and so are lost. Such wholesale shuffling and loss of large sections of DNA will probably kill the cell in most cases, but just occasionally it will produce a cell that can outgrow its neighbours – and turn cancerous.

This shows how the chromosome shatters and rejoins in a random order. Note that the two ends of the chromosome and the centromere (represented by a circle) are preserved. These are essential features of a functioning linear chromosome. From MacKinnon and Campbell 2013. Cancer Genetics 206:238-251.

This shows how the chromosome shatters and rejoins in a random order. Note that the two ends of the chromosome and the centromere (represented by a circle) are preserved. These are essential features of a functioning linear chromosome. From MacKinnon and Campbell 2013. Cancer Genetics 206:238-251.

References:

MacKinnon RN and Campbell LJ 2013. Chromothripsis under the microscope: a cytogenetic perspective of two cases of AML with catastrophic chromosome rearrangement. Cancer Genetics 206:238-251

Stephens PJ et al. 2011. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell 144:27-40

In the summer of 2012-13 my daughter Katherine and her friends got together to make a short film during their holidays while they waited for their University offers.

Nearly two years later here it is.

 

 

sadako and golden cranesadako and golden bigsadako and golden boat

Paper Thin is based on the true story of Sadako Sasaki, who tried to fold 1,000 paper cranes to beat her leukaemia. This is an amazing short film directed by Elizabeth Duong with beautiful original music by Daniel Hernandez and Elle Graham. Don’t just take my word for it. Don’t just watch it. Don’t just like it.

Share Paper Thin to help make leukaemia HISTORY.

 

A generous, dedicated group of people have been working hard to create the story of  Sadako Sasaki in film to support our leukaemia research project.

Sadako survived the Hiroshima bombing in 1945. Radiation can kill quickly by causing radiation sickness, or slowly by causing cancer. Like many other children who survived the bomb, Sadako developed leukaemia ten years later when she was 12.

paper thin - liz's coming shot

The Director Elizabeth Duong and the Paper Thin Productions team is poweful both visually and emotionally. Daniel Hernandez and Elle Graham’s music can stand on its own.

So why Paper Thin? The story ties in with our research into leukaemia, and we’re aiming to raise awareness and support for the research.

This is crowdsourcing with a difference. Researchers worldwide are looking to alternative sources of funding as grant funding gets more and more competitive. Missing out on grant funding is not a short term problem. One very real problem is that skilled Scientists have to leave research.  That means the projects they’re working on stop and discoveries they were after will never happen. The expertise  they’ve build up won’t be used.

The most risky projects are the ones that make the biggest difference, the game-changing discoveries. But granting bodies don’t like risky projects. They like giving money to the big labs – this means more of the same.

Crowdsourcing is gaining in popularity – the people decide for themselves what research projects their donations will help.  In the case if Paper Thin there’s no middle-man crowdsourcing platform (they take a commission).

Another big difference is the product – this is a leukaemia story in film and music.

So because the Paper Thin Productions team’s given their time freely you can be sure 100% of your donation will go to the research.

THANK-YOU TO ALL INVOLVED

The credits do better justice than I could to acknowledge the people who helped. Special thanks also to Jenny Going from the Essendon Symphony Orchestra for allowing us to use their time to rehearse and record the music, and also to Shauna Hurley, Bridget Bible, Richard Prentice, Barabara Cytowicz, Leslea Johnson, Amber Atkinson and Kayanne Allan from St Vincent’s Hospital who helped with the logistics of how to do this from the Hospital’s perspective.

 

Carl Sagan was an astronomer and academic, best known for popularising astronomy. He hosted and co-produced the original hugely popular series Cosmos: A Personal Voyage.  Its sequel Cosmos: A Spacetime Odyssey was released this year. Even though I’m a biologist at heart I was fascinated by the original Cosmos.

Sagan was diagnosed with a myelodysplastic syndrome (MDS) and died at the age of 62, in 1996. In interviews near the end of his life he discussed myelodysplasia and said he was hopeful he’d been cured. He died at the Fred Hutchinson Cancer Research Center of pneumonia  after his third bone marrow transplant, a complication of this illness.

Most people with a diagnosis of MDS won’t have heard of it before. MDS is a group of bone marrow diseases. It’s at least as common as or more common than leukaemia but older people have a higher risk – perhaps one in 2,000 over the age of 60. A third of people with MDS will develop leukaemia. The 14th July, 2014, is the Leukaemia Foundation of Australia‘s second National MDS Day . One of the aims of MDS Day is to raise awareness of MDS.

Sagan’s illness was an opportunity to popularise MDS, but look how the cause of his death was described in these TV news reports.

In these news stories he was said to have died from a complication of “a rare blood disorder that led to cancer”, or “a blood disease”, “a bone marrow disease”, and even a” bone cancer” – the name of his disease was avoided.

Myelodysplasia literally means abnormal bone marrow cells. Blood cells are made in the bone marrow. In MDS the immature bone marow cells are abnormal and don’t mature properly. So the blood doesn’t have enough normal blood cells to do its job effectively. The blood is made of a number of different types of cells and the different types of MDS relate to the type of abnormal cell. MDS is often associated with a recognised chromosome abnormality, and identifying these chromosome abnormalities can help with diagnosis, treatment and prognosis. Therapy-related MDS is a specific type of MDS caused by treatment for a previous unrelated cancer and it usually has a poor outcome and very abnormal chromosomes.

MDS research has been neglected but has picked up recently. Some of the recent progress includes work by Carl Walkley and Louise Purton at St Vincent’s Institute in Melbourne, Australia.

MDS has had a history of name changes that seems to have made the meaning of its name less clear, except to medically trained people. This hasn’t helped improve public awareness of MDS. It was first named Di Guglielmo Syndrome in 1923 after its discoverer, then became refractory anaemia, then preleukaemic anaemia, preleukaemic acute human leukaemia, preleukaemia, and finally in 1976 the French-American-British Co-Operative Group of haematologists named it myelodysplastic syndromes. This recognised that it’s a group of related diseases and that not all cases will go on to develop into leukaemia.

Pathologist Ed Uthman, thinks Sagan’s Disease would be a better name for myelodysplastic syndromes – both as a tribute to Carl Sagan and a name that would mean more to most people than myelodysplastic syndromes.  Maybe he has something. Plenty of syndromes and diseases are named after people who studied them. Down Syndrome would have to be the best known example. Have you heard of amyotrophic lateral sclerosis? Motor neurone disease? Lou Gehrig’s disease? The first name is probably a nice technical description of the disease, but I’m guessing you’re more likely to  have an idea of what the disease is from one of the last two names, because they’re used in popular media and are connected in the public eye with famous sufferers – Stephen Hawking and Lou Gehrig. (Ed Uthman also think’s Lou Gehrig’s Disease should be “Hawking’s Disease”.)

I’ll let Carl Sagan have the last words on popular (mis)understanding of science (extract from Wikiquote).

We live in a society absolutely dependent on science and technology and yet have cleverly arranged things so that almost no one understands science and technology. That’s a clear prescription for disaster.

Every kid starts out as a natural-born scientist, and then we beat it out of them. A few trickle through the system with their wonder and enthusiasm for science intact.

(Cross-posted to Fireside Science at SciFund Challenge.)

I was privileged to speak at the Aspiring Women in Science conference in Brisbane, Australia last month. I think this is a fantastic initiative, which gives senior school girls an insight into working in various fields of Science (including Engineering and Medical specialties). Girls from years 10, 11 and 12 from all over Queensland were invited (mostly aged 15-17). Why girls? I attended a few of the talks myself and it reinforced my own view that there are experiences and conditions specific to women in Science. In talks on Science-as-a-career, information and advice from a woman’s perspective wouldn’t normally come up. It’s only fair to be as informed as possible when making a life choice. Both research and non-research careers were featured in the conference program.

We heard a lot of inspirational stories from Scientists in many different fields. Professor Ian Frazer – inventor of the Human Papilloma Virus vaccine Gardasil – was the keynote speaker. He spoke of his exciting adventures of discovery, from his childhood in Scotland to fulfilling his dream of building the Translational Research Institute in Brisbane. His dream will allow local scientific discoveries to be developed to commercialisation in Australia, instead of being sold to overseas companies. The virus (HPV) is a major cause of female cancer deaths in developing countries, and Prof Frazer is still battling to spread this message.

In the other sessions many women spoke of their work, of what excites and challenges all Scientists, and the challenges that women in Science in face because they’re women. Although we like to think that parents have equal roles nowadays,  a woman in research will likely have to decide whether she puts her children in childcare from a young age or give up research. Grandparents and other extended family are often not around to help because research fields are so specialised that researchers are likely to live far from their home town. These are stories that are familiar to me and were reinforced as I spoke to and listened to other women.

Several researchers, including Prof Frazer, spoke of the frustration of grant writing, the pressure of finding research funds, and the difficulty of sustaining a research career through short-term employment cycles. But more than one researcher also mentioned a published research study showing that a female name on an application for a (US) University Science position means the applicant is less likely to win the job, and the starting salary will probably be lower. Women also compete for grants, publication, promotion and leadership roles. And they drop out faster than men.

I don’t want to sound too negative, but students should be informed when they’re planning their future. I also believe things are slowly improving and if we keep on challenging the system it will keep on getting better. Being aware of the problem is part of working for a solution.

I can speak for scientific research and the thrill of discovery – if it excites you and you’re willing to give it a go – then go for it. Determination is part of the secret of success. I’m inspired by Jim Carrey’s lesson from his father: “You can fail at what you don’t want, so you might as well take a chance on doing what you love.”

But I do think that if you’re taking a risk it will be a bolder and better one if you have a safety net – such as family support, or a professional qualification as a backup plan.

I can’t pass up the opportunity to present these words from one inspirational woman about another, Maya Angelou (nothing to do with Science).

The Aspiring Women in Science conference was co-ordinated by Ela Martin and St Aidan’s Anglican Girls’ School in Brisbane. Part of the reason I was invited to speak is my history as a past student. I admire the school for making this conference and the school’s facilities and resources available to ALL girls in Queensland. Queensland’s a big place and some girls travelled a long way to make it. So, to Ela Martin and St Aidan’s, to Queensland University who supported the conference, and to all the Scientists who gave their time, a big thank-you for your initiative. I hope this idea has wings – per volar sunata.

 

Cancer has been described as the most common genetic disease. This doesn’t necessarily mean it’s hereditary – usually the genetic mistakes that cause cancer arise in the body’s organs or tissues and can’t be inherited. We’re continually learning of new cancer-causing genetic mistakes.

If we think of genes as words spelling out the instructions for our bodies to function, there are different types of mistakes or “typos” that can cause cancer. Some of these are like spelling mistakes – an incorrect letter or two. The mistakes I’ll be talking about here involve whole words (or lots of them). For example one or more copies of a word are added – ” very big” becomes “very very big” – extra copies of a cancer gene (we call them oncogenes) can cause or accelerate cancer growth. Or if a word is lost – “don’t grow” becomes “grow” – this illustrates loss of a tumour suppressor gene.

I described the breakage-fusion-bridge cycle a few weeks back. The BFB cycle was a theory developed from studies with maize, but it also applies to some cancers. This is an example of basic research,  inspired by curiosity but eventually being useful in ways we never imagined. If you look back at that post it shows how the BFB cycle can cause gain or loss of genes. If a cancer gene is  multiplied, or if a tumour suppressor gene is in the part that’s lost, the cell can gain a growth advantage over other cells, which is part of the process causing cancer.

Here’s an example.

Cancer cell lines are cancer cells that can be grown indefinitely in the laboratory. I’ve just published a paper on HEL, which is a leukaemia cell line. It’s popular for studying how cells make globin (molecules in red blood cells that help us process the air we breathe).

The chromosomes of HEL are very abnormal. I’ve used a combination of techniques to show how the chromosomes are reorganised as well as which parts have been lost, gained and amplified.  It’s very complicated.

One of the gene abnormalities in HEL is amplification of the JAK2 gene. JAK2 is a well-known cancer gene that is often abnormal in blood cancers. The normal gene can be mutated to become a cancer gene, for example by a “spelling mistake” in the DNA. By adding extra copies of this abnormal gene the effects can be magnified. This is known as gene amplification. There are a few cancer genes that are commonly amplified in cancers.

To cut a long story short, JAK2 is amplified in the HEL cell line. And a nearby tumour suppressor gene (CDKN2A) has been lost. But only by looking at the chromosomes does the reason become clear. Some detective work tells us that there were some breakage-fusion-bridge events. I won’t go into the detail – if you’re interested it’s in the paper. But we have chromosomes whose ancestors had two centromeres, and if we use a DNA tag for the region between the centromeres we can see “stripes”.

Here’s an example from HEL that shows DNA amplified by the BFB cycle – we can show where a gene is on the chromosomes by labelling it with a fluorescence tagged DNA “probe”. The striped pattern reminds us of the yellow dots in the modelling clay demonstration:

The red is DNA that's normally at one end of some of the chromosomes. The stripes tell us that the end of a chromosome (22) is in the middle of these chromosomes and there are extra copies. This helps us work out how these chromosomes were made. It's a strong clue that BFB cycles were involved and the ancestral chromosome had two centromeres.

The red is DNA that’s normally at one end of some of the chromosomes. The stripes tell us that the end of a chromosome (22) is in the middle of these chromosomes and there are extra copies. It’s a strong clue that BFB cycles were involved and the ancestral chromosome had two centromeres.

The new chromosome with four copies of the yellow gene courtesy of the breakage-fusion-bridge cycle.

The new chromosome with four copies of the yellow gene courtesy of the breakage-fusion-bridge cycle.

Recently JAK2 amplification was also reported in triple-negative breast cancer. Triple negative means that three well-known genetic causes of breast cancer are not present. So finding JAK2 amplification would help explain the cause of some triple-negative breast cancers, and could help work out an effective treatment. Perhaps this JAK2 amplification is sometimes caused by BFB cycles. Without looking at the layout of the abnormal chromosomes we may never know.

To end this story, here’s Bruce Mercer’s cartoon diagram showing the BFB cycle in HEL: http://emph.oxfordjournals.org/content/2013/1/225/F6.expansion.html

Chromosomes that cause cancer. Part 2. The Philadelphia Chromosome.

This is a link to my latest post on the Fireside Science Blog on the SciFund Challenge website.

It describes the first discovery of a cancer-causing chromosome and the exciting progress in treating chronic myeloid leukaemia that it made possible.