Archives for category: general science

Dahl - bedtime stories

Roald Dahl had anything but a boring life. I would say he followed his dreams. He told stories that have been loved by children all over the world, like Charlie and the Chocolate Factory and Matilda. He wrote the screenplay for a James Bond movieChitty Chitty Bang Bang and other movies. During World War II he was a fighter pilot and sent intelligence to the spy agency MI6. He died in 1990 from MDS when he was 74. MDS is short for myelodysplastic syndromes, which are a rare group of related diseases in which the blood doesn’t function properly.

Today, the 14th of July, is the third National MDS Day in Australia. A year ago I wrote about Carl Sagan and MDS. Sagan was a very well-known scientist who took quite an interest in his disease, and we can hear him speak about his illness and his fight with it in the media (there’s a link to an interview at the end of this post).

But there’s not much detail, on the internet at least. about Dahl’s illness. One biography just says he went into hospital with an unknown infection in November 1990 and died 11 days later. (Interestingly for me this was the John Radcliffe Hospital in Oxford, UK, and I was working there at the time.) Twenty percent of MDS patients do have infections that are serious enough to need a hospital stay, in fact that’s what finally killed Sagan too.

Organisers of a charity event for MDS in the UK this year took the trouble to explain what MDS is in their advertising material. MDS has a public image problem – almost no public image that is.

  • “Unfortunately (!) the only ‘celebrities’ that have had MDS are all dead (Carl Sagan, Roald Dahl, Susan Sonntag) – if we had a few living ones then maybe this would be a disease with more public profile and hence money for research.”

Myelodysplastic syndromes (MDS for short) can be mild, severe, or anything in between. About a third of people with MDS will get leukaemia (acute myeloid leukaemia or AML).

I’d like to think Mr Dahl would have made a good scientist. Apparently his mother wanted to pay for him to get a good university education but he passed up the offer because he would rather go exploring. He also had a wildly creative imagination, which is always good for investigating things. Indeed, whe did help invent a medical device – the Wade-Dahl-Till valve – that was used to save children with brain injury.

Roald Dahl knew about the importance of vaccination first-hand. His daughter Olivia died from Measles when she was seven. He wrote  a passionate letter pleading with parents to get their children vaccinated.

His widow Felicity set up the Roald Dahl Foundation, which is now known as the Marvellous Children’s Charity. It continues the work he started, helping seriously sick children. I think the Marvellous Mr Dahl would have approved.

SOME LINKS

More about MDS

Carl Sagan talking about his illness:

The Leukaemia Foundation of Australia has information for patients and carers, and supports research in Australia.

There’s also the MDS Beacon, the MDS Foundation, and information available through several other leukaemia and health-related organisations on the net.

More about Roald Dahl

Official website: http://roalddahl.com/

https://en.wikipedia.org/wiki/Roald_Dahl

Biographies

http://www.biographyonline.net/writers/roald-dahl.html

http://www.biography.com/people/roald-dahl-9264648

This poster is on the wall by my desk. It was drawn by my young friend Nicholas. Nicholas is really keen on all things science and came with his mum to have a look at a science lab. He had done his research on leukaemia and brought me this cool picture. Thank-you Nicholas.

Stop Leukemia – by Nicholas

On the 9th of December there was a large oil spill in the Sundarbans of Bangladesh. Most of the 350,000 litres of furnace oil in an oil tanker spilt into the water. Check out these images from the BBC.

The Sundarbans in Bangladesh is the world’s largest contiguous tidal mangrove forest. The mangrove ecosystem is ecologically valuable, filtering contaminants out of the water. Mangroves are already threatened around the world. The Sundarbans is noted for its exceptional biodiversity but the oil spill is threatening many unique species including the Bengal tiger and the Ganges river dolphin. And mangroves are particularly sensitive to oil spills.

 

There’s also a huge human cost. The locals are not in the lucky position of having a government with money and technology to help clean up the mess. They’re scooping the oil out of the water with their bare hands. This oil is toxic and cancerous. Its components cause severe (poor prognosis) leukaemia. Children are exposing themselves. They need our help.

I’ve found a bit of news coverage online, but little from Australia’s government sponsored news broadcasters. There’s nothing from SBS (our overseas-focussed broadcaster), and only the one story from our ABC. This environmental disaster affects us not only because of the damage to a UNESCO World Heritage Site and the threat to wildlife, but also because the water in the Sundarbans is everyone’s water – it reaches your country in a manner of days. If the media won’t cover the story you can help play a crucial role. Pester the news media. Spread the story on social media.

Here are some tips on how to do this:

From Water Defense:

“Share information about the oil spill on your social media page to keep it top of mind. For the latest information check on Twitter @Sundarbans_SOS for regular updates and remember to use the hashtag #SundarbansOilSpill.”

From the River Dolphin blog:

“If this post bothers you at all, then I suggest you 1) contact major forms of news media (see post one for how to if you are in the US) and work HARD to get them to cover this story (US still not covering for the most part). 2) Write to the leaders of your country and ask them to pressure the government of Bangladesh to change this clean up solution IMMEDIATELY.  3) SHARE (don’t like… only sharing moves this story along) this post, and help us get the word out.”

An international response team including oil spill experts has now been sent to the Sundarbans in response to a request to the UN from the government of Bangladesh.

There’s an indiegogo campaign to raise money to get extra help to the Sundarbans – the not-for-profit Water Defense organisation wants to send a team to help clean the water. Why donate if there’s a UN team? Besides the obvious statement that a faster cleanup is better, there’s some controversy about using chemical dispersants to clean up oil spills. These dispersants end up in the water. The Water Defense team has a specially developed water cleaning foam that soaks the oil out of the water.

 

Follow Jennifer Lewis’s River Dolphin blog. Jennifer is the Director of the Tropical Dolphin Research Foundation. She reports on the human impact of the oil spill.

http://theriverdolphin.blogspot.com.au/

http://theriverdolphin.blogspot.com.au/2014/12/side-track-off-dolphins-for-one-post.html

http://theriverdolphin.blogspot.com.au/2014/12/ecological-disasterto-say-least.html

http://theriverdolphin.blogspot.com.au/2014/12/assessing-damage.html

 

More information:

http://news.nationalgeographic.com/news/2014/12/141216-sundarbans-oil-spill-bangladesh-tigers-dolphins-conservation/

http://news.sciencemag.org/asiapacific/2014/12/officials-scramble-respond-bangladesh-oil-spill

http://www.theguardian.com/environment/2014/dec/11/bangladesh-oil-spill-threatens-rare-dolphins

http://thinkprogress.org/climate/2014/12/24/3606793/experts-to-help-children-clean-mangrove-oil-spill/

http://whc.unesco.org/en/news/1209

http://en.wikipedia.org/wiki/List_of_oil_spills

 

 

 

 

In the summer of 2012-13 my daughter Katherine and her friends got together to make a short film during their holidays while they waited for their University offers.

Nearly two years later here it is.

 

 

sadako and golden cranesadako and golden bigsadako and golden boat

Paper Thin is based on the true story of Sadako Sasaki, who tried to fold 1,000 paper cranes to beat her leukaemia. This is an amazing short film directed by Elizabeth Duong with beautiful original music by Daniel Hernandez and Elle Graham. Don’t just take my word for it. Don’t just watch it. Don’t just like it.

Share Paper Thin to help make leukaemia HISTORY.

 

 

Carl Sagan was an astronomer and academic, best known for popularising astronomy. He hosted and co-produced the original hugely popular series Cosmos: A Personal Voyage.  Its sequel Cosmos: A Spacetime Odyssey was released this year. Even though I’m a biologist at heart I was fascinated by the original Cosmos.

Sagan was diagnosed with a myelodysplastic syndrome (MDS) and died at the age of 62, in 1996. In interviews near the end of his life he discussed myelodysplasia and said he was hopeful he’d been cured. He died at the Fred Hutchinson Cancer Research Center of pneumonia  after his third bone marrow transplant, a complication of this illness.

Most people with a diagnosis of MDS won’t have heard of it before. MDS is a group of bone marrow diseases. It’s at least as common as or more common than leukaemia but older people have a higher risk – perhaps one in 2,000 over the age of 60. A third of people with MDS will develop leukaemia. The 14th July, 2014, is the Leukaemia Foundation of Australia‘s second National MDS Day . One of the aims of MDS Day is to raise awareness of MDS.

Sagan’s illness was an opportunity to popularise MDS, but look how the cause of his death was described in these TV news reports.

In these news stories he was said to have died from a complication of “a rare blood disorder that led to cancer”, or “a blood disease”, “a bone marrow disease”, and even a” bone cancer” – the name of his disease was avoided.

Myelodysplasia literally means abnormal bone marrow cells. Blood cells are made in the bone marrow. In MDS the immature bone marow cells are abnormal and don’t mature properly. So the blood doesn’t have enough normal blood cells to do its job effectively. The blood is made of a number of different types of cells and the different types of MDS relate to the type of abnormal cell. MDS is often associated with a recognised chromosome abnormality, and identifying these chromosome abnormalities can help with diagnosis, treatment and prognosis. Therapy-related MDS is a specific type of MDS caused by treatment for a previous unrelated cancer and it usually has a poor outcome and very abnormal chromosomes.

MDS research has been neglected but has picked up recently. Some of the recent progress includes work by Carl Walkley and Louise Purton at St Vincent’s Institute in Melbourne, Australia.

MDS has had a history of name changes that seems to have made the meaning of its name less clear, except to medically trained people. This hasn’t helped improve public awareness of MDS. It was first named Di Guglielmo Syndrome in 1923 after its discoverer, then became refractory anaemia, then preleukaemic anaemia, preleukaemic acute human leukaemia, preleukaemia, and finally in 1976 the French-American-British Co-Operative Group of haematologists named it myelodysplastic syndromes. This recognised that it’s a group of related diseases and that not all cases will go on to develop into leukaemia.

Pathologist Ed Uthman, thinks Sagan’s Disease would be a better name for myelodysplastic syndromes – both as a tribute to Carl Sagan and a name that would mean more to most people than myelodysplastic syndromes.  Maybe he has something. Plenty of syndromes and diseases are named after people who studied them. Down Syndrome would have to be the best known example. Have you heard of amyotrophic lateral sclerosis? Motor neurone disease? Lou Gehrig’s disease? The first name is probably a nice technical description of the disease, but I’m guessing you’re more likely to  have an idea of what the disease is from one of the last two names, because they’re used in popular media and are connected in the public eye with famous sufferers – Stephen Hawking and Lou Gehrig. (Ed Uthman also think’s Lou Gehrig’s Disease should be “Hawking’s Disease”.)

I’ll let Carl Sagan have the last words on popular (mis)understanding of science (extract from Wikiquote).

We live in a society absolutely dependent on science and technology and yet have cleverly arranged things so that almost no one understands science and technology. That’s a clear prescription for disaster.

Every kid starts out as a natural-born scientist, and then we beat it out of them. A few trickle through the system with their wonder and enthusiasm for science intact.

(Cross-posted to Fireside Science at SciFund Challenge.)

I was privileged to speak at the Aspiring Women in Science conference in Brisbane, Australia last month. I think this is a fantastic initiative, which gives senior school girls an insight into working in various fields of Science (including Engineering and Medical specialties). Girls from years 10, 11 and 12 from all over Queensland were invited (mostly aged 15-17). Why girls? I attended a few of the talks myself and it reinforced my own view that there are experiences and conditions specific to women in Science. In talks on Science-as-a-career, information and advice from a woman’s perspective wouldn’t normally come up. It’s only fair to be as informed as possible when making a life choice. Both research and non-research careers were featured in the conference program.

We heard a lot of inspirational stories from Scientists in many different fields. Professor Ian Frazer – inventor of the Human Papilloma Virus vaccine Gardasil – was the keynote speaker. He spoke of his exciting adventures of discovery, from his childhood in Scotland to fulfilling his dream of building the Translational Research Institute in Brisbane. His dream will allow local scientific discoveries to be developed to commercialisation in Australia, instead of being sold to overseas companies. The virus (HPV) is a major cause of female cancer deaths in developing countries, and Prof Frazer is still battling to spread this message.

In the other sessions many women spoke of their work, of what excites and challenges all Scientists, and the challenges that women in Science in face because they’re women. Although we like to think that parents have equal roles nowadays,  a woman in research will likely have to decide whether she puts her children in childcare from a young age or give up research. Grandparents and other extended family are often not around to help because research fields are so specialised that researchers are likely to live far from their home town. These are stories that are familiar to me and were reinforced as I spoke to and listened to other women.

Several researchers, including Prof Frazer, spoke of the frustration of grant writing, the pressure of finding research funds, and the difficulty of sustaining a research career through short-term employment cycles. But more than one researcher also mentioned a published research study showing that a female name on an application for a (US) University Science position means the applicant is less likely to win the job, and the starting salary will probably be lower. Women also compete for grants, publication, promotion and leadership roles. And they drop out faster than men.

I don’t want to sound too negative, but students should be informed when they’re planning their future. I also believe things are slowly improving and if we keep on challenging the system it will keep on getting better. Being aware of the problem is part of working for a solution.

I can speak for scientific research and the thrill of discovery – if it excites you and you’re willing to give it a go – then go for it. Determination is part of the secret of success. I’m inspired by Jim Carrey’s lesson from his father: “You can fail at what you don’t want, so you might as well take a chance on doing what you love.”

But I do think that if you’re taking a risk it will be a bolder and better one if you have a safety net – such as family support, or a professional qualification as a backup plan.

I can’t pass up the opportunity to present these words from one inspirational woman about another, Maya Angelou (nothing to do with Science).

The Aspiring Women in Science conference was co-ordinated by Ela Martin and St Aidan’s Anglican Girls’ School in Brisbane. Part of the reason I was invited to speak is my history as a past student. I admire the school for making this conference and the school’s facilities and resources available to ALL girls in Queensland. Queensland’s a big place and some girls travelled a long way to make it. So, to Ela Martin and St Aidan’s, to Queensland University who supported the conference, and to all the Scientists who gave their time, a big thank-you for your initiative. I hope this idea has wings – per volar sunata.

 

(This is cross-posted from the Fireside Science blog at SciFund Challenge.)

We care about our health and the health of our loved ones. If only we had explanations and cures for all of humanity’s illnesses. But there are still many diseases that aren’t being researched, even though they cause real and obvious suffering.

Medical research is paid for in a number of ways. The obvious one is the drug companies, where there’s a cost-benefit consideration. I’ll discuss the other options, and how it works in Australia.

The biggest pool of money comes from the government. We have the National Health and Medical Research Council (NHMRC), which runs several grant funding schemes each year. There are also some Fellowships that provide researchers with a secure salary for up to five years. Research grants typically last three years, and they usually include salaries for scientists working on the project. Only 16.9% of Project Grant applications were funded for this year. And the competition gets stiffer every year. So this is clearly not a reliable source of funding for most research wish lists. In the words of the crowdfunding site microryza, “Our system for funding science is broken. Our planet’s biggest funders are so conservative that they fund … only the most obvious ideas. Discoveries that matter are languishing.”

Charitable giving picks up a lot of research that the government doesn’t fund. Besides the work they do supporting patients and their families, some patient advocate groups raise funds for research. There are also private citizens who set up research trusts, and many many more who donate to research. Most of these charities and trusts pull less weight than the government grants, but there are some very large ones based overseas, such as the Wellcome Trust and the Bill & Melinda Gates Foundation.

There’s also a new movement known as crowdfunding. You may have heard of Kickstarter. There are other crowdfunding sites specifically for scientific research. Examples are microryza (now renamed experiment), Petridish, and SciFund Challenge. There have been some remarkable successes like the microbiome project but most projects ask for a modest amount. Researchers are turning to crowdfunding more and more as other sources of funding become harder to get.

So there’s a limited pot of money for research. Who decides what it’s used for? Government grants are hotly contested. One of the tasks of the grant writer is to convince the reviewers that theirs is an important problem and the team has the expertise to solve it. Some charitable trusts have a similar review system, but it can also vary quite a lot and can depend on the wishes of the donors. Crowdfunding cuts out the middle man and it’s the donor who must be convinced that the project is worthwhile.

So, why isn’t there more research into your disease and what can you do about it?

You will need researchers who have an interest in your disease and some funding. Which brings us to awareness. Greater awareness by governments, policy makers, researchers, and doctors who make diagnoses will help your case. Under-recognition of rare diseases is a huge problem which can also be addressed by awareness.

The common and high profile diseases such as cancer get a lot of research dollars. Their severity and impact on the community are obvious. Rare diseases don’t have this advantage. Rare Disease Day is an annual event that advocates for people with diseases, syndromes and conditions that occur in fewer than one in 2,000 people. Rare Disease Day is coming up – most years it falls on the 28th February, but every fourth year or 1,461st day it falls on that rare date – 29th February.

Patient advocate groups that offer research grants can have some influence. They can offer grants that are targeted to a specific disease or question. This can help them find researchers with the appropriate expertise, and attract researchers who are looking for funding. They can use the funds that have been raised specifically to improve the lives of the people they support. Crowdfunding is also a great way to target donors who are keen to support the cause.

About 80% of rare diseases are caused by genetic errors. Humans have over 3,000,000,000 letters in their genetic makeup, and these spell out over 20,000 pairs of genes. Many genetic diseases are caused by a one letter error in one of these genes. The human DNA sequence is now mostly known, so it’s possible to read the DNA sequence of the patient and compare it to a standard to find a needle-in-a-haystack DNA error. Unfortunately not all genetic diseases are that straightforward – but it’s a start.

Recently there have been some heart-warming examples of very rare but debilitating diseases for which the causes have been found with the help of sequencing and a persistent parent, being in the right place at the right time, or scientists who were looking for a problem to solve. These are some of the good news stories of modern genetics that are starting to make an impact on rare diseases.

If you want to help make a difference my advice is to support your disease’s patient advocate group, fundraise and lobby for research. If there isn’t a support group for your disease, you could start one. If your disease is rare, Rare Disease Day is there to help. And anyone can help raise awareness about a disease. Better awareness brings better understanding.

LINKS TO PERSONAL GENOME STORIES

Cracking the code – transcript of the Australian Story episode on ABC TV. A father’s quest to find the gene mutation causing his son’s disease.

Genome maps solve medical mystery for Calif. twins – Shots – Health news from NPR.

We gained hope.” The story of Lilly Grossman’s genome – National Geographic’s Phenomena – Not Exactly Rocket Science

James Lupski’s Research into His Disease Paved Way Toward Personalized Medicine – Quest (MDA Magazine Online – Fighting Muscle Disease)

The Solution to Diagnostic Delay May Be Closer Than We Think – blog post by the National Organization for Rare Disorders arguing that a rare disease app may help doctors diagnose rare diseases: “…most… rare diseases are unfamiliar to doctors… When doctors are unable to explain patients’ symptoms — as they are for at least three years in the majority of rare disease cases — psychiatric diagnosis is made by default.”

Something completely different – Solar lighting – making a difference to the world’s poorest people.

Here’s my latest post in SciFund Challenge’s Fireside Science blog.

Check out the other posts too. This is a blog about anything and everything science.

Claymation update – nearly there!